If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30b^2+13b-10=0
a = 30; b = 13; c = -10;
Δ = b2-4ac
Δ = 132-4·30·(-10)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-37}{2*30}=\frac{-50}{60} =-5/6 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+37}{2*30}=\frac{24}{60} =2/5 $
| (6n+4)5=100 | | 4n+10=5 | | 7+2=a-a | | 3(6)+b=19 | | 2y+24=9y-18 | | 2v+18=-3v+23 | | -5y+20=5y-30 | | 15=b-12 | | 25=-16x^2+35x+7 | | 8^(x-4)=32^4x. | | 9.34=w+1.54 | | 16x^2-19x+4=0 | | 5c/4-1/2=2c/3+61/2 | | 7x+10=11x-1 | | 3/(2*x-17)=15 | | 6x^2+x=504-x | | 2x^2-6x-154=0 | | 7/2y+4/3y=5 | | -56=7-9y | | 3x+2x=15+5 | | A(x+B)=4x+10 | | 9(v-8)=-90 | | y-1/3=3/7 | | -5r-32=6+8(8-7r) | | 30+5x=3-3(5-4x) | | -3-i=-2 | | g-67=43 | | 3+48x=-11 | | 3+3(5x+3)=36+7x | | 0.025x=60000 | | 4x+8=7.2+5x4x+8=7.2+5x4 | | 1x+3x=1x+5 |